$\boldsymbol{\pi}$ HandaKaFunda \& Ooliveboard

 present
Shortcuts, Formulas \& Tips

For MBA, Banking, Civil Services \& Other Entrance Examinations

Vol. 3: Geometry

olive board

Lines and Angles
Sum of the angles in a straight line is 180°
Vertically opposite angles are congruent (equal).
If any point is equidistant from the endpoints of a segment, then it must lie on the perpendicular bisector

When two parallel lines are intersected by a transversal, corresponding angles are equal, alternate angles are equal and co-interior angles are supplementary. (All acute angles formed are equal to each other and all obtuse angles are equal to each other)

Tip: The ratio of intercepts formed by a transversal intersecting three parallel lines is equal to the ratio of corresponding intercepts formed by any other transversal.

$$
\Rightarrow \frac{a}{b}=\frac{c}{d}=\frac{e}{f}
$$

π HandaKaFunda

Triangles

Area of a triangle:

Sum of interior angles of a triangle is 180° and sum of exterior angles is 360°.

Exterior Angle = Sum of remote interior angles.
Sum of two sides is always greater than the third side and the difference of two sides is always lesser than the third side.

Side opposite to the biggest angle is longest and the side opposite to the smallest angle is the shortest.

$\boldsymbol{\pi}$ HandaKaFunda

A Median of a triangle is a line segment joining a vertex to the midpoint of the opposing side. The three medians intersect in a single point, called the Centroid of the triangle. Centroid divides the median in the ratio of 2:1

An Altitude of a triangle is a straight line through a vertex and perpendicular to the opposite side or an extension of the opposite side. The three altitudes intersect in a single point, called the Orthocenter of the triangle.

A Perpendicular Bisector is a line that forms a right angle with one of the triangle's sides and intersects that side at its midpoint. The three perpendicular bisectors intersect in a single point, called the Circumcenter of the triangle. It is the center of the circumcircle which passes through all the vertices of the triangle.

An Angle Bisector is a line that divides the angle at one of the vertices in two equal parts. The three angle bisectors intersect in a single point, called the Incenter of the triangle. It is the center of the incircle which touches all sides of a triangle.

Tip: Centroid and Incenter will always lie inside the triangle.

- For an acute angled triangle, the Circumcenter and the Orthocenter will lie inside the triangle.
- For an obtuse angled triangle, the Circumcenter and the Orthocenter will lie outside the triangle.
- For a right angled triangle the Circumcenter will lie at the midpoint of the hypotenuse and the Orthocenter will lie at the vertex at which the angle is 90°.

Tip: The orthocenter, centroid, and circumcenter always lie on the same line known as Euler Line.

- The orthocenter is twice as far from the centroid as the circumcenter is.
- If the triangle is Isosceles then the incenter lies on the same line.
- If the triangle is equilateral, all four are the same point.

Theorems

Mid Point Theorem: The line joining the midpoint of any two sides is parallel to the third side and is half the length of the third side.

Basic Proportionality Theorem: If $D E \| B C$, then $A D / D B$ = AE/EC

Apollonius' Theorem: $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$

Interior Angle Bisector Theorem: AE/ED = BA/BD

Special Triangles

Right Angled Triangle:

$\triangle \mathrm{ABC} \approx \triangle \mathrm{ADB} \approx \triangle \mathrm{BDC}$
$B D^{2}=A D \times D C$ and $A B \times B C=B D \times D C$

Equilateral Triangle:

All angles are equal to 60°. All sides are equal also.
Height $=\frac{\sqrt{3}}{2} \times$ Side
Area $=\frac{\sqrt{3}}{4} x$ Side 2
Inradius = 1/3 Height
Circumradius $=2 / 3$ Height.

Isosceles Triangle:

Angles equal to opposite sides are equal.
Area $=\frac{c}{4} \sqrt{4 a^{2}-c^{2}}$

oliveboard
 π HandaKaFunda

$30^{\circ}-30^{\circ}-120^{\circ}$ Triangle

Area $=\frac{\sqrt{3}}{4} * x^{2}$

Similarity of Triangles

Two triangles are similar if their corresponding angles are congruent and corresponding sides are in proportion.

Tests of similarity: (AA / SSS / SAS)
For similar triangles, if the sides are in the ratio of $a: b$
\Rightarrow Corresponding heights are in the ratio of $a: b$
\Rightarrow Corresponding medians are in the ratio of $a: b$
\Rightarrow Circumradii are in the ratio of $a: b$
\Rightarrow Inradii are in the ratio of $\mathrm{a}: \mathrm{b}$
\Rightarrow Perimeters are in the ratio of $a: b$
\Rightarrow Areas are in the ratio $a^{2}: b^{2}$

Congruency of Triangles

Two triangles are congruent if their corresponding sides and angles are congruent.

Tests of congruence: (SSS / SAS / AAS / ASA)

Polygons

Sum of interior angles $=(n-2) \times 180^{\circ}=(2 n-4) \times 90^{\circ}$
Sum of exterior angles $=360^{\circ}$
Number of diagonals $={ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}=\frac{n(n-3)}{2}$
Number of triangles which can be formed by the vertices $={ }^{n} C_{3}$

Regular Polygon:

If all sides and all angles are equal, it is a regular polygon.

All regular polygons can be inscribed in or circumscribed about a circle.

Area $=1 / 2 \times$ Perimeter x Inradius \{Inradius is the perpendicular from centre to any side\}

Each Interior Angle $=\frac{(n-2) 180^{\circ}}{n} ;$ Exterior $=360^{\circ} / n$

Quadrilaterals:

Sum of the interior angles $=$ Sum of the exterior angles $=$ 360°
Area for a quadrilateral is given by $1 / 2 d_{1} d_{2} \operatorname{Sin} \theta$.

Cyclic Quadrilateral

If all vertices of a quadrilateral lie on the circumference of a circle, it is known as a cyclic quadrilateral.
Opposite angles are supplementary
Area $=\sqrt{(s-a)(s-b)(s-c)(s-d)}$ where s is the semi perimeter $s=\frac{a+b+c+d}{2}$

Tip: Sum of product of opposite sides $=$ Product of diagonals

Tip: If a circle can be inscribed in a quadrilateral, its area is given by $=\sqrt{a b c d}$

Parallelogram

Opposite sides are parallel and congruent.
Opposite angles are congruent and consecutive angles are supplementary.

Diagonals of a parallelogram bisect each other.
Perimeter $=2$ (Sum of adjacent sides);
Area $=$ Base \times Height $=A D \times B E$

Tip: A parallelogram inscribed in a circle is always a Rectangle. A parallelogram circumscribed about a circle is always a Rhombus.

$\boldsymbol{\pi}$ HandaKaFunda

Tip: Each diagonal divides a parallelogram in two triangles of equal area.

Tip: Sum of squares of diagonals $=$ Sum of squares of four sides

$$
\Rightarrow A C^{2}+B D^{2}=A B^{2}+B C^{2}+C D^{2}+D A^{2}
$$

Tip: A Rectangle is formed by intersection of the four angle bisectors of a parallelogram.

Rhombus

A parallelogram with all sides equal is a Rhombus. Its diagonals bisect at 90°.

Perimeter $=4 \mathrm{a} ; \quad$ Area $=1 / 2 \mathrm{~d}_{1} \mathrm{~d}_{2} ; \quad$ Area $=\mathrm{dx} \sqrt{a^{2}-\left(\frac{d}{2}\right)^{2}}$

Rectangle

A parallelogram with all angles equal $\left(90^{\circ}\right)$ is a Rectangle. Its diagonals are congruent.

Perimeter $=2(\mathrm{l}+\mathrm{b}) ; \quad$ Area $=\mathrm{lb}$

Square

A parallelogram with sides equal and all angles equal is a square. Its diagonals are congruent and bisect at 90°.

Perimeter $=4 \mathrm{a}$; Area $=\mathrm{a}^{2} ;$ Diagonals $=\mathrm{a} \sqrt{2}$

Tip: From all quadrilaterals with a given area, the square has the least perimeter. For all quadrilaterals with a given perimeter, the square has the greatest area.

π HandaKaFunda

olive board

Isosceles Trapezium

The non-parallel sides (lateral sides) are equal in length. Angles made by each parallel side with the lateral sides are equal.

Tip: If a trapezium is inscribed in a circle, it has to be an isosceles trapezium. If a circle can be inscribed in a trapezium, Sum of parallel sides = Sum of lateral -idn-

Continued >>

π HandaKaFunda

Hexagon (Regular)

Perimeter $=6 \mathrm{a} ; \quad$ Area $=\frac{3 \sqrt{3}}{2} \times \mathrm{a}^{2}$
Sum of Interior angles $=720^{\circ}$.
Each Interior Angle $=120^{\circ}$. Exterior $=60^{\circ}$

Number of diagonals $=9$ \{3 big and 6 small $\}$
Length of big diagonals (3) $=2 \mathrm{a}$
Length of small diagonals (6) $=\sqrt{3}$ a

Tip: A regular hexagon can be considered as a combination of six equilateral triangles. All regular polygons can be considered as a combination of ' n ' isosceles triangles.

Area of a Pentagon $=1.72 \mathrm{a}^{2}$
Area of an Octagon $=2(\sqrt{2}+1) \mathrm{a}^{2}$

Circles

Diameter $=2 r ;$ Circumference $=2 \pi r ;$ Area $=\pi r^{2}$
Chords equidistant from the centre of a circle are equal.
A line from the centre, perpendicular to a chord, bisects the chord.

Equal chords subtend equal angles at the centre.
The diameter is the longest chord of a circle.

A chord /arc subtends equal angle at any point on the circumference and double of that at the centre.

Chords / Arcs of equal lengths subtend equal angles.

Chord $A B$ divides the circle into two parts: Minor Arc AXB and Major Arc AYB.
Measure of $\operatorname{arc} \mathrm{AXB}=\angle \mathrm{AOB}=\theta$
Length $(\operatorname{arc} A X B)=\frac{\theta}{360^{\circ}} \times 2 \pi r$
Area (sector OAXB) $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
Area of Minor Segment $=$ Shaded Area in above figure
\Rightarrow Area of Sector OAXB - Area of $\triangle \mathrm{OAB}$
$\Rightarrow r^{2}\left[\frac{\pi \theta}{360^{\circ}}-\frac{\operatorname{Sin} \theta}{2}\right]$

Properties of Tangents, Secants and Chords

The radius and tangent are perpendicular to each other.
There can only be two tangents from an external point, which are equal in length PA = PB

$P A \times P B=P C^{2}$
$\theta=1 / 2[m(\operatorname{Arc} A C)-m(\operatorname{Arc} B C)]$

Alternate Segment Theorem

The angle made by the chord $A B$ with the tangent at A $(P Q)$ is equal to the angle that it subtends on the opposite side of the circumference.
$\Rightarrow \angle B A Q=\angle A C B$

oliveboord

Common Tangents

Two Circles	No. of Common Tangents	Distance Between Centers (d)
One is completely inside other	$\mathbf{0}$	$<r 1-r 2$
Touch internally	$\mathbf{1}$	$=r 1-r 2$
Intersect	$\mathbf{2}$	$r 1-\mathrm{r} 2<d<r 1+r 2$
Touch externally	$\mathbf{3}$	$=r 1+r 2$
One is completely outside other	$\mathbf{4}$	$>r 1+r 2$

Length of the Direct Common Tangent (DCT)

$$
\Rightarrow \mathrm{AD}=\mathrm{BC}=\sqrt{d^{2}-(r 1-r 2)^{2}}
$$

Length of the Transverse Common Tangent (TCT)
$\Rightarrow \mathrm{RT}=\mathrm{SU}=\sqrt{d^{2}-(r 1+r 2)^{2}}$
Tip: The two centers(O and O^{\prime}), point of intersection of DCTs (P) and point of intersection of TCTs (Q) are collinear. Q divides $0 O^{\prime}$ in the ratio $r_{1}: r_{2}$ internally whearea P divides $O O^{\prime}$ in the ratio $r_{1}: r_{2}$ externally.

Solid Figures

	Volume	Total Surface Area	Lateral / Curved Surface Area
Cube	Side 3	$6 \times$ Side 2	$4 \times$ Side 2
Cuboid	$L \times B \times H$	$2(L B+L H+B H)$	$2(L H+B H)$
Cylinder	$\pi r^{2} h$	$2 \pi r(r+h)$	$2 \pi r h$
Cone	$(1 / 3) \pi r^{2} h$	$\pi r(r+L)$	$\pi r l$
Sphere	$(4 / 3) \pi r^{3}$	$4 \pi r^{2}$	$4 \pi r^{2}$
Hemisphere $L=\sqrt{\left.r^{2}+h^{2}\right\}}$			
$(2 / 3) \pi r^{3}$	$3 \pi r^{2}$	$2 \pi r^{2}$	

Tip: There are 4 body diagonals in a cube / cuboid of length ($\sqrt{3} \times$ side $)$ and $\sqrt{l^{2}+b^{2}+h^{2}}$ respectively.

Frustum / Truncated Cone

It can be obtained by cutting a cone with a plane parallel to the circular base.

Volume $=1 / 3 \pi h\left(R^{2}+r^{2}+R r\right)$
Lateral Surface Area $=\pi(\mathrm{R}+\mathrm{r}) \mathrm{L}$
Total Surface Area $=\pi(R+r) L+\pi\left(R^{2}+r^{2}\right)$

Prism

It is a solid with rectangular vertical faces and bases as congruent polygons (of n sides). It will have ' $2 n$ ' Vertices; ' $n+2$ ' Faces and ' $3 n$ ' Sides / Edges.

Lateral Surface Area $=$ Perimeter \times Height
Total Surface Area $=$ Perimeter \times Height +2 Area $_{\text {Base }}$
Volume $=$ Area $_{\text {Base }} \times$ Height

Pyramid

It is a figure in which the outer surfaces are triangular and converge at a point known as the apex, which is aligned directly above the centre of the base.

Lateral Surface Area $=1 / 2 \times$ Perimeter \times Slant Height
Total Surface Area $=1 / 2 \times$ Perimeter \times Slant Height + Area $_{\text {Base }}$

Volume $=1 / 3 \times$ Area $_{\text {Base }} \times$ Height

Tip: If a sphere is inscribed in a cube of side a, the radius of the sphere will be $a / 2$. If a sphere is circumscribed about a cube of side a, the radius of the sphere will be $\sqrt{3}$ a /2.

Tip: If a largest possible sphere is inscribed in a cylinder of radius ' a ' and height h, its radius r will be

$$
\begin{array}{ll}
\Rightarrow r=h / 2 & \{\text { If } 2 a>h\} \\
\Rightarrow r=a & \{\text { If } 2 a<h\}
\end{array}
$$

Tip: If a largest possible sphere is inscribed in a cone of radius r and slant height equal to $2 r$, then the radius of sphere $=r / \sqrt{3}$

Tip: If a cube is inscribed in a hemisphere of radius r, then the edge of the cube $=r \sqrt{\frac{2}{3}}$

Co-ordinate Geometry

Distance between two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by $=\sqrt{\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}}$

If a point $R(x, y)$ divides $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ internally in the ratio of $m: n$, the coordinates of R ie (x, y) are given by
$=\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}$
If a point $R(x, y)$ divides $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ externally in the ratio of $m: n$, the coordinates of R ie (x, y) are given by
$=\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}$

Tip: The X axis divides the line joining $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ in the ratio of $y_{1}: y_{2}$

Tip: The Y axis divides the line joining $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ in the ratio of $x_{1}: x_{2}$

Slope(m) of a line is the tangent of the angle made by the line with the positive direction of the X -Axis.
For a general equation $a x+b y+c=0$; slope $(m)=-a / b$. For a line joining two points, $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, the slope (m) is $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slope(m)	Type of line	Angle with X- Axis
>0 (+ive)	Rising	Acute
0	Parallel to X-Axis	0°
<0 (-ive)	Falling	Obtuse
∞	Parallel to Y-Axis	90°

Equation of a line parallel to X-axis is $y=a\{O f X$-Axis is $y=0\}$ Equation of a line parallel to Y-Axis is $x=a\{O f Y$-Axis is $x=0\}$

The intercept of a line is the distance between the point where it cuts the X-Axis or Y-Axis and the origin. Y Intercept is often denoted with the letter ' c '.

Continued >>

oliveboard

Equation of a line

General form: $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
Slope Intercept Form: Slope is m, y -intercept is c

$$
\Rightarrow y=m x+c
$$

Slope Point Form: Slope is m, point is x_{1}, y_{1}

$$
\Rightarrow y-y_{1}=m\left(x-x_{1}\right)
$$

Two Point Form: Two points are $\mathrm{x}_{1}, \mathrm{y}_{1}$ and $\mathrm{x}_{2}, \mathrm{y}_{2}$

$$
\Rightarrow \mathrm{y}-\mathrm{y}_{1}=\left[\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

Two Intercept Form: X -intercept is a, Y-intercept is b .

$$
\Rightarrow \frac{x}{a}+\frac{y}{b}=1 \quad \text { OR } \mathrm{bx}+\mathrm{ay}=\mathrm{ab}
$$

Acute angle between two lines with slope m_{1} and m_{2} is given by
\Rightarrow For parallel lines, $\theta=0^{\circ}$; $m_{1}=m_{2}$
\Rightarrow For perpendicular lines, $\theta=90^{\circ}$; $m_{1} m_{2}=-1$
Distance of a point $\mathbf{P}\left(x_{1}, y_{1}\right)$ from a line $a x+b y+c=0$

$$
\Rightarrow \mathrm{d}=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

\Rightarrow From origin, $\mathrm{d}=\left|\frac{c}{\sqrt{a^{2}+b^{2}}}\right|$
Distance between two parallel lines, $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$

$$
\Rightarrow d=\left|\frac{c_{1}-c_{2}}{\sqrt{a^{2}+b^{2}}}\right|
$$

Tip: If we know three points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ of a parallelogram, the fourth point is given by

$$
\Rightarrow\left(x_{1}+x_{3}-x_{2}, y_{1}+y_{3}-y_{2}\right)
$$

$$
\Rightarrow \operatorname{Tan} \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

π HandaKaFunda

Triangle

The vertices are $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ and $R\left(x_{3}, y_{3}\right)$
Incenter $=\left\{\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right\}$
Centroid $=\left\{\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{a+b+c}\right\}$
Area $=1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

Circle

General Equation: $x^{2}+y^{2}+2 g x+2 f y+c=0$
\Rightarrow Centre is $(-\mathrm{g}, \mathrm{f})$ and radius $=\sqrt{g^{2}+f^{2}-c}$
Centre is (h, k) and radius is r
$\Rightarrow \sqrt{(x-h)^{2}+(y-k)^{2}}=r$
Centre is origin and radius is r
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$
$\boldsymbol{\pi}$ HandaKaFunda

Trigonometry

$\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{A B}{A C}$
$\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{B C}{A C}$
$\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}=\frac{A B}{B C}$
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

Some Basic Identities:
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

θ	$\boldsymbol{\operatorname { S i n }} \theta$	$\boldsymbol{C o s} \theta$	$\operatorname{Tan} \theta$
$\mathbf{0}^{\mathbf{0}}$	0	1	0
$\mathbf{3 0}^{\mathbf{0}}$	$1 / 2$	$\sqrt{3} / 2$	$1 / \sqrt{3}$
$\mathbf{4 5}^{\mathbf{0}}$	$1 / \sqrt{2}$	$1 / \sqrt{2}$	1
$\mathbf{6 0}^{\mathbf{0}}$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$
$\mathbf{9 0}^{\mathbf{0}}$	1	0	∞

Signs of T-ratios in Different Quadrants:

Addition Formulae

$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\operatorname{Tan}(\mathrm{A}+\mathrm{B})-\frac{\tan A+\tan B}{1-\tan A \tan B}$

Trigonometric Rules

Subtraction Formulae

$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\tan (\mathrm{A}-\mathrm{B})=\frac{\tan A-\tan B}{1+\tan A \tan B}$

Sine Rule: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2 R}$
Cosine Rule: $\operatorname{Cos} \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\operatorname{Cos} \mathrm{B}=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\operatorname{Cos} \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

$$
0
$$

